Midterm-MS403

October 22, 2013

- (20)1. Complete the following definitions:
- (a) A set G with a binary operation * is called a group if
- (b) A group G is called cyclic if
- (c) Let G be a group and $g \in G$. The <u>centralizer</u> of g is
 - (d) Let V and W be vector spaces over the field F. A function $T:V\to W$ is called a linear transformation if
 - (20)2. Give examples of each of the following. No justification is required.
- (a) A group $G, G \neq \{e\}$, for which Z(G), the center of G, equals $\{e\}$.
- (b) A proper subgroup of finite index in an infinite group.
- (c) A noncyclic group of order 45.
- (d) An element of order two in an infinite nonabelian group.
- (10)3. State the fundamental theorem of homomorphisms for groups.
 - (10)4. (a) Find the exponent of S_6 .
- (b) Find the order of the centralizer of the following permutation in S_7 .

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 5 & 6 & 1 & 2 & 7
\end{pmatrix}$$

- (10)5. Prove there is no homomorphism from D_4 onto C_4 .
- (12)6. True or False. No justification required.
- (a) Évery subgroup of a cyclic group is cyclic.
- (b) If V and W are finite dimensional F-vector spaces of the same dimension, then V is isomorphic to W.
- (c) Let V and W be finite dimensional F-vector spaces and $T:V\to W$ a linear transformation. If dim(V)< dim(W), then T is one-to-one.
- (d) In Q_8 every sugroup is normal.

- (8)7. Find all of the elements in the cyclic group (\mathbf{Z}_{24},\oplus) that generate the whole group.
- (10)8. Let V and W be finite dimensional vector spaces over the field F. Let $S:V \to W$ and $T:W \to V$ be linear transformations.

 (a) Prove that if dim(V) > dim(W), then the linear transformation $T \circ S: V \to V$ is not
- an isomorphism.
- (b) Let A be an $m \times n$ matrix over F and B an $n \times m$ matrix over F. Prove that if m > n then $AB \neq I$.